

TuneVLSeg: Prompt Tuning Benchmark for Vision-Language Segmentation Models

17th Asian Conference on Computer Vision Hanoi, Vietnam 10th December 2024

Rabin Adhikari, Safal Thapaliya, Manish Dhakal, Bishesh Khanal

NAAMII, Nepal

Outline

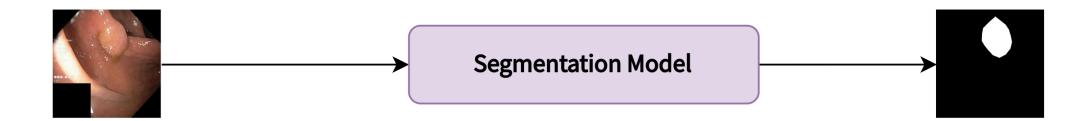
- Vision Language Models (VLMs) and Segmentation models (VLSMs)
- Adapting foundational VLMs and VLSMs
- Prompt Tuning
- TuneVLSeg Benchmark Framework
- Key Results

Outline

- Vision Language Models (VLMs) and Segmentation models (VLSMs)
- Adapting foundational VLMs and VLSMs
- Prompt Tuning
- TuneVLSeg Benchmark Framework
- Key Results

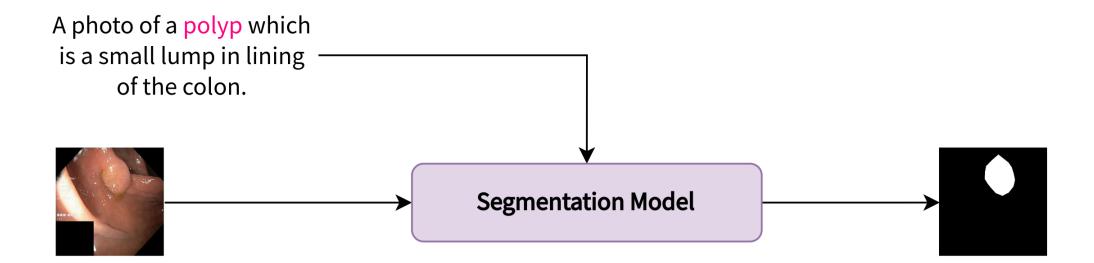
Segmentation in Medical Images

- Crucial for diagnosis, prognosis and surgery planning
- Recent segmentation models:
 - Excellent performance on curated datasets
 - Lack generalization across image modalities and datasets
 - $\circ~$ Requires retraining when new classes are introduced



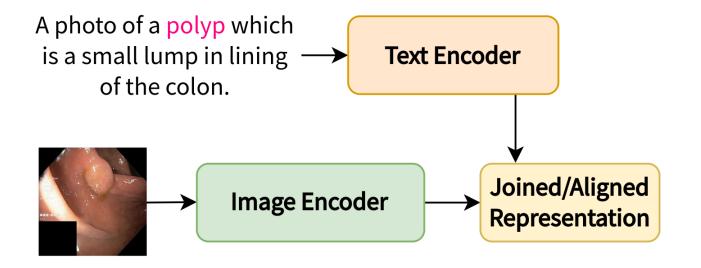
Segmentation with prompts

- Enables human interaction by describing the target structure
- Open vocabulary segmentation on new classes
- Easier to adapt models to new image modalities and datasets



Segmentation with prompts

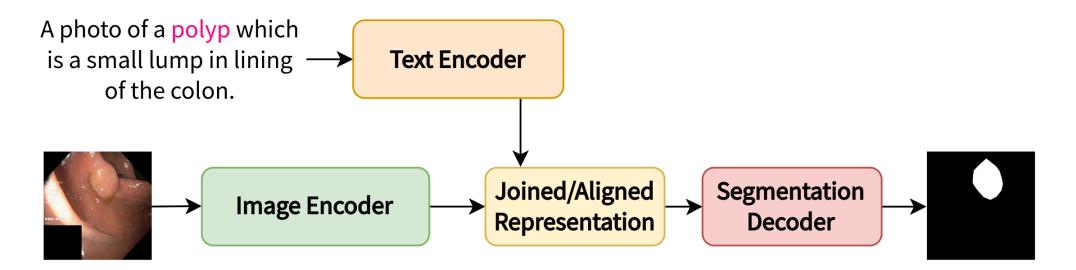
- Enables human interaction by describing the target structure
- Open vocabulary segmentation on new classes
- Easier to adapt models to new image modalities and datasets



Segmentation with prompts

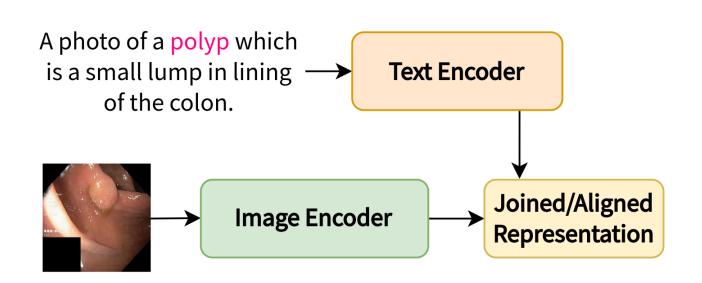
- Enables human interaction by describing the target structure
- Open vocabulary segmentation on new classes
- Easier to adapt models to new image modalities and datasets

Vision-Language Segmentation Model (VLSM)



Foundational VLMs

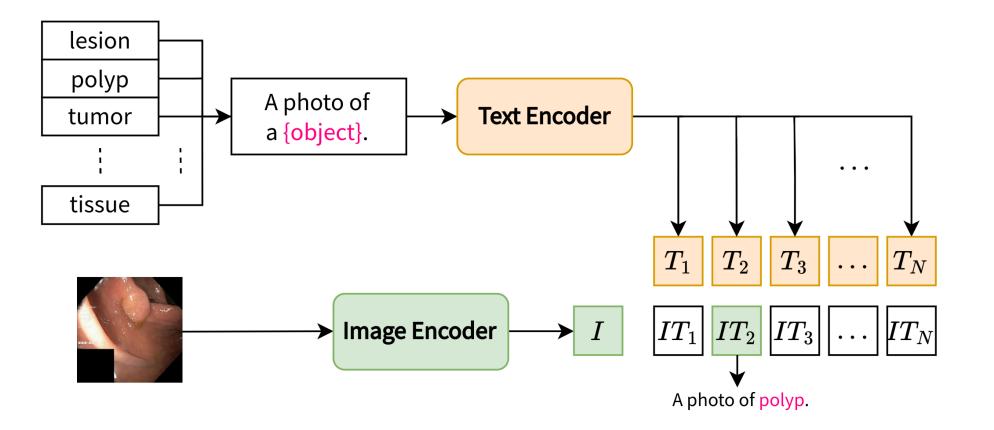
- Large scale pretraining to align text and image representations
- Millions of image-text pairs



Vision-Language Model (VLM)

Foundational VLMs: CLIP

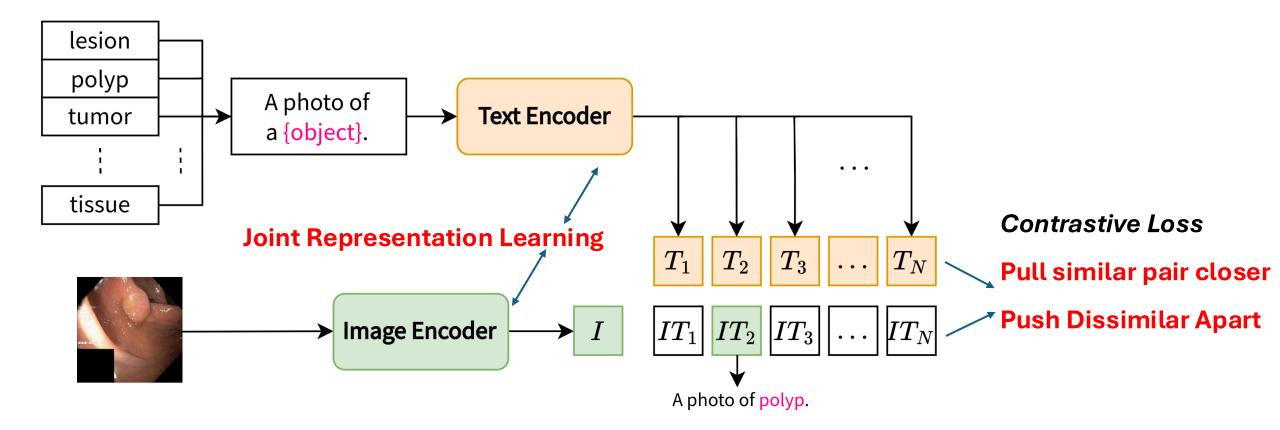
The most popular vision language model trained on 400 million image-text pairs



Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual models from natural language supervision. In International conference on machine learning (pp. 8748-8763). PMLR.

Foundational VLMs: CLIP

The most popular vision language model trained on 400 million image-text pairs

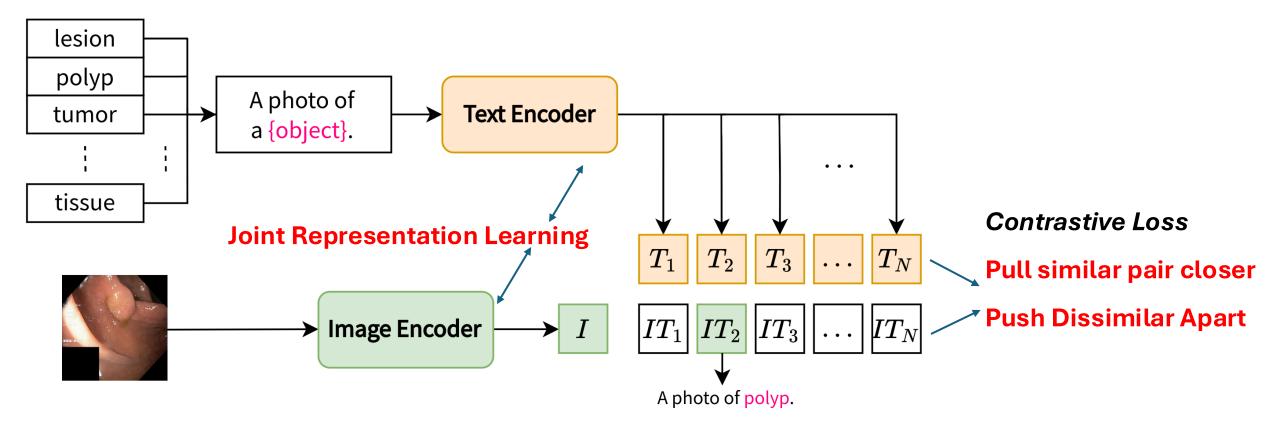


Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual models from natural language supervision. In International conference on machine learning (pp. 8748-8763). PMLR.

Foundational VLMs: CLIP

The most popular vision language model trained on 400 million image-text pairs

Reusing the encoders that have learnt powerful representations for building VLSMs

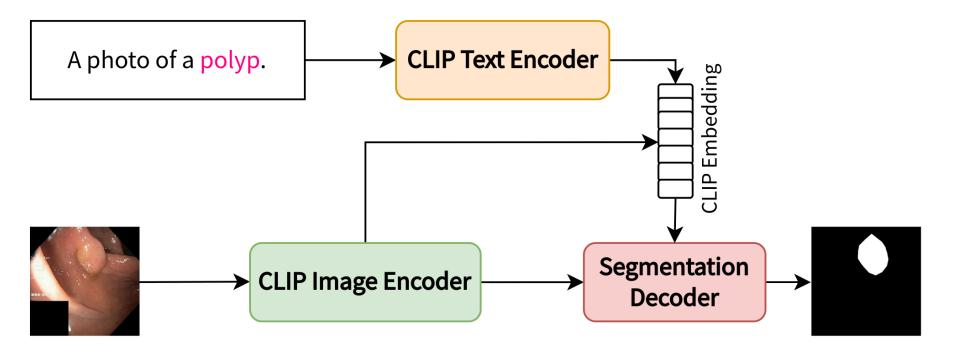


Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual models from natural language supervision. In International conference on machine learning (pp. 8748-8763). PMLR.

Foundational VLSM: CLIPSeg

- Trained on PhraseCut Dataset with 340,000 image-text pairs
- Excellent zero-shot and few-shot performance on natural image segmentation
 - Due to the prompts

Both encoders are Transformer models

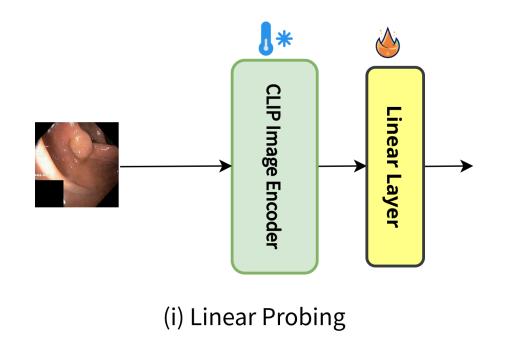


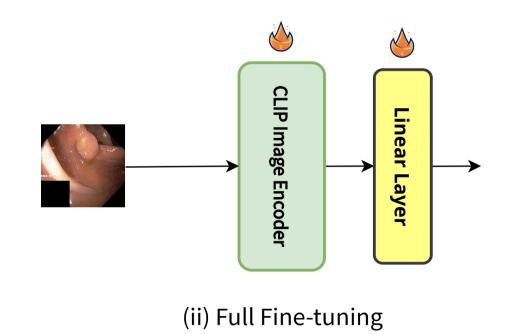
Outline

- Vision Language Models (VLMs) and Segmentation models (VLSMs)
- Adapting foundational VLMs and VLSMs
- Prompt Tuning
- TuneVLSeg Benchmark Framework
- Key Results

Adapting foundational VLMs for medical images

- Scarce labeled medical datasets
- Massive scale of models
- Finetuning these models is infeasible for medical images

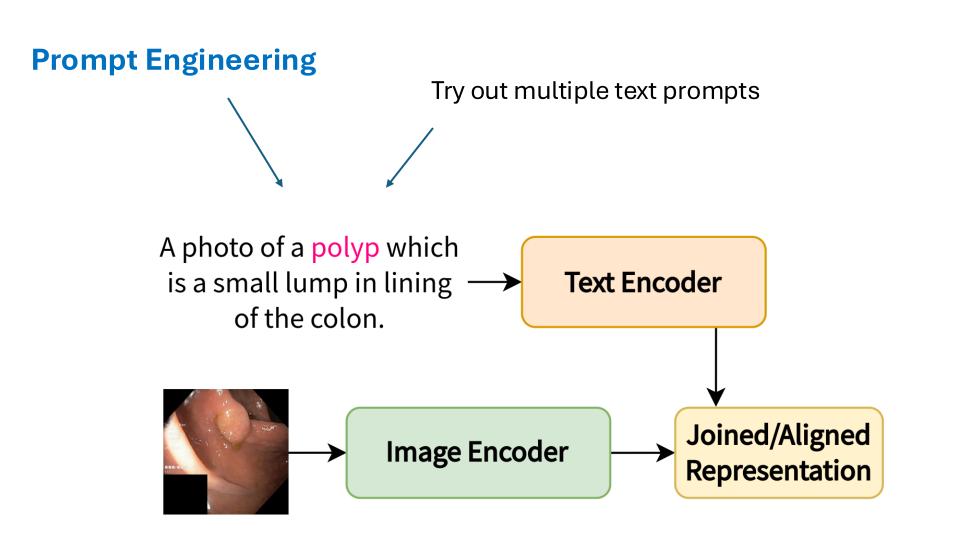




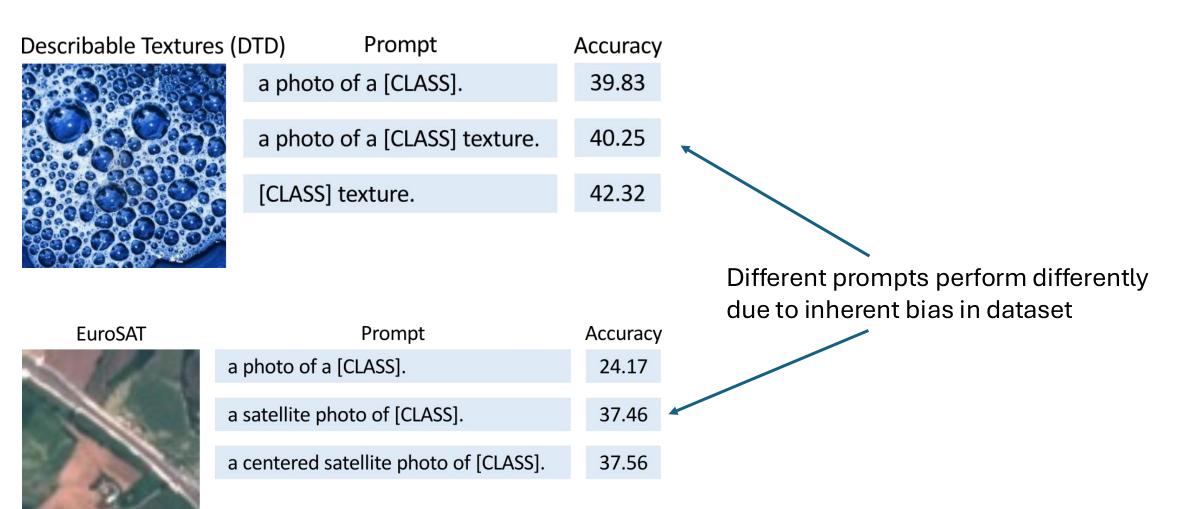
ACCV HANDI

' **2024** DEC 8-12

Adapting foundational VLMs for medical images



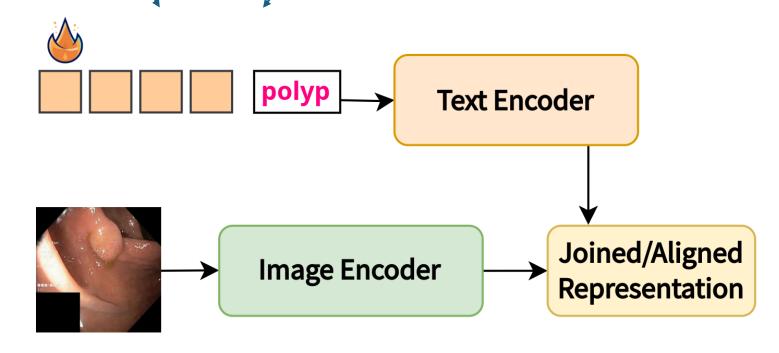
Prompt Engineering in VLMs improves performance



It is hard to find the right set of prompts

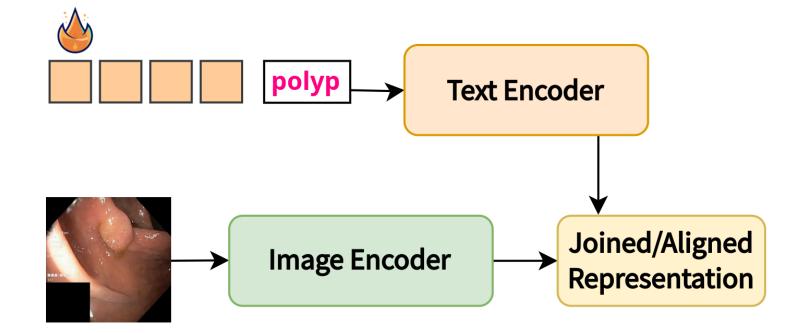
Adapting foundational VLMs for medical images

Prompt Tuning Introduce learnable context vectors instead of text prompts

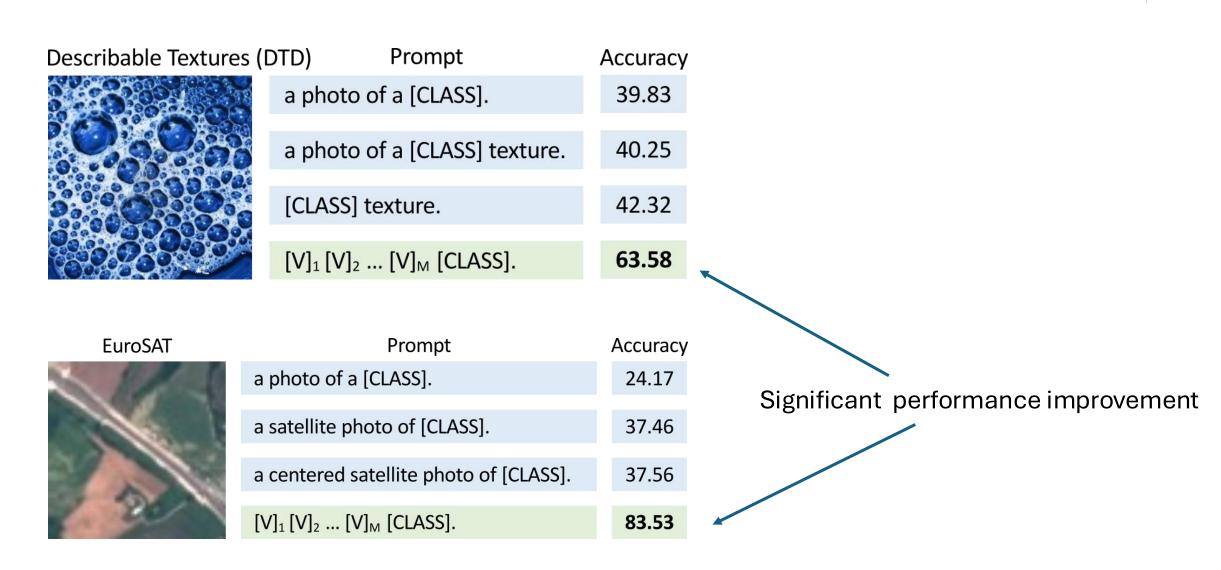


Prompt Tuning

- Adapts VLMs to new datasets by updating only the context vectors
- Automatically *learns* prompts for downstream tasks

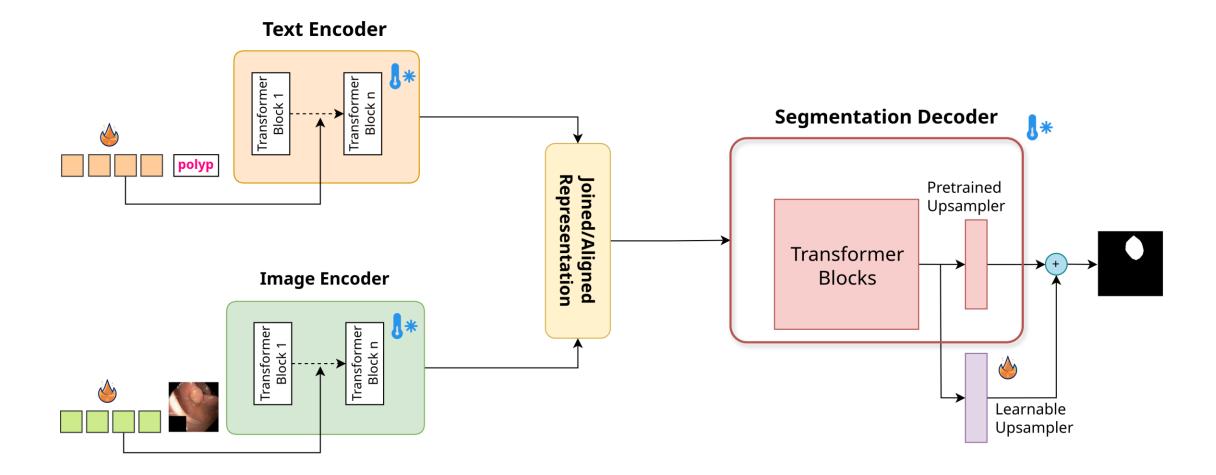


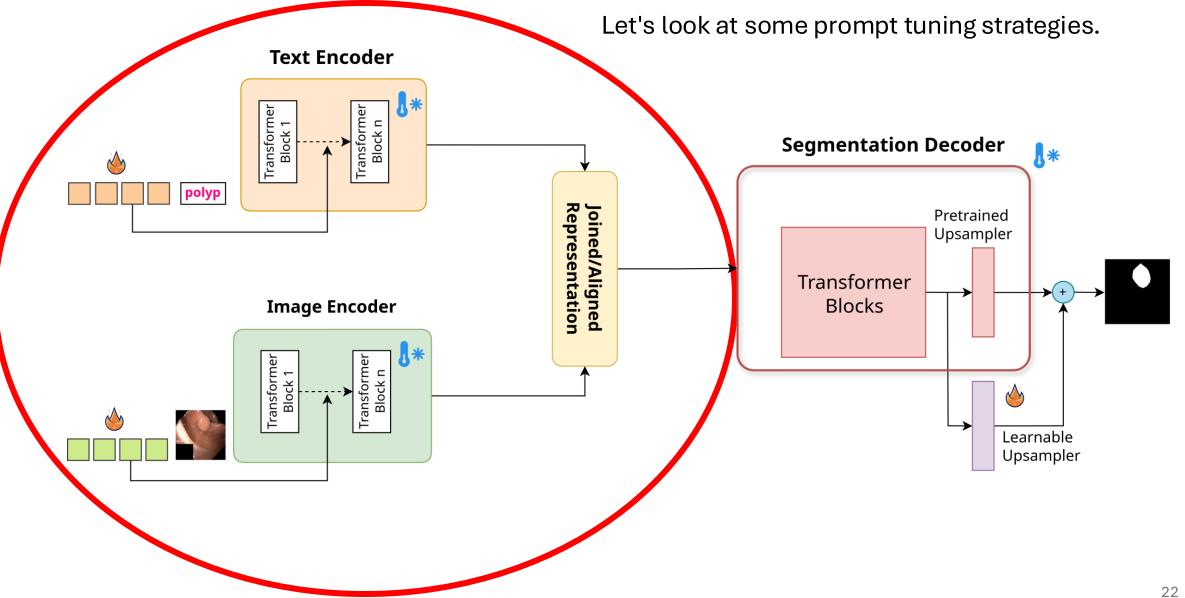
Prompt Tuning in VLMs gives excellent performance



Outline

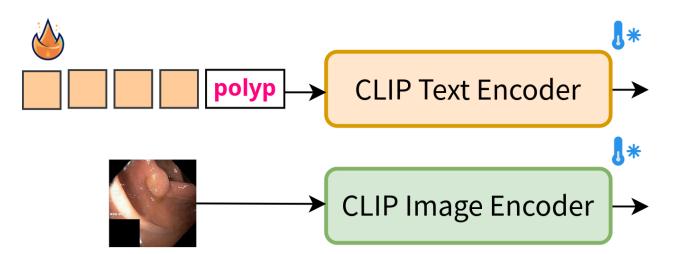
- Vision Language Models (VLMs) and Segmentation models (VLSMs)
- Adapting foundational VLMs and VLSMs
- Prompt Tuning
- TuneVLSeg Benchmark Framework
- Key Results





Introducing the context vectors at text branch

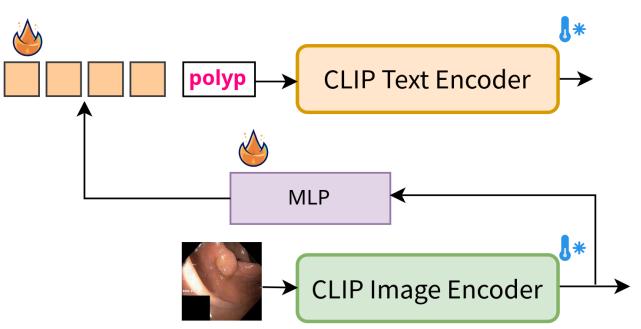
One set of vectors for the whole dataset or class



Context Optimization (CoOp)

Image instance conditions the text context vectors

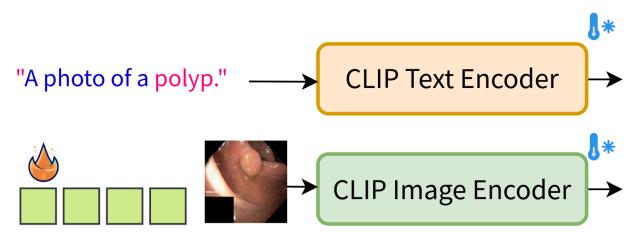
Different prompt vectors for each instance



Conditional Context Optimization (CoCoOp)

Introducing the context vectors at vision branch

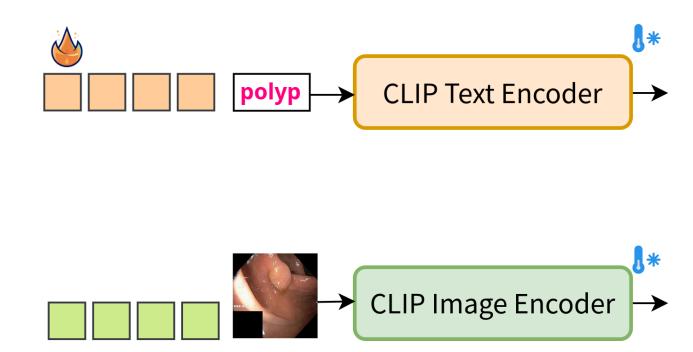
Works for transformer models.



Visual Prompt Tuning (VPT)

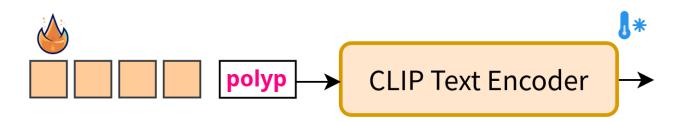
Jia, M., Tang, L., Chen, B. C., Cardie, C., Belongie, S., Hariharan, B., & Lim, S. N. (2022, October). Visual prompt tuning. In *European Conference on Computer Vision* (pp. 709-727). Cham: Springer Nature Switzerland.

Introducing the context vectors at both at text and vision branch



Khattak, M. U., Rasheed, H., Maaz, M., Khan, S., & Khan, F. S. (2023). Maple: Multi-modal prompt learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 19113-19122).

Introducing the context vectors at both at text and vision branch

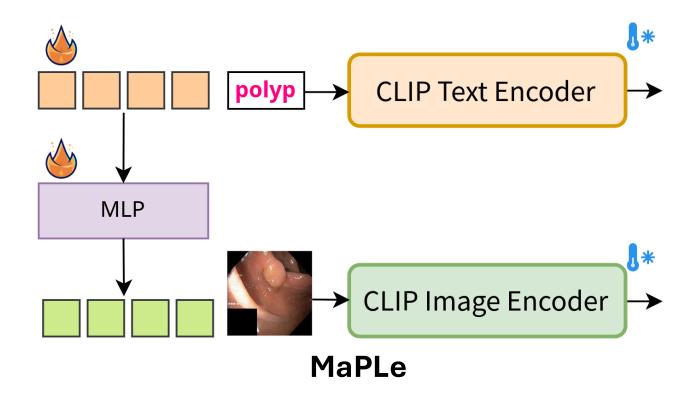


No interaction between text and image ----> Suboptimal performance

Khattak, M. U., Rasheed, H., Maaz, M., Khan, S., & Khan, F. S. (2023). Maple: Multi-modal prompt learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 19113-19122).

Introducing the context vectors at both at text and vision branch

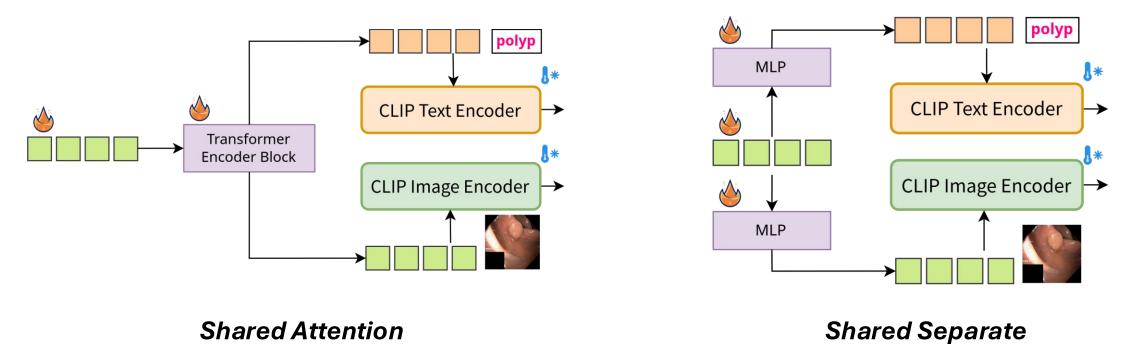
Prompts are initialized in text embedding space



Khattak, M. U., Rasheed, H., Maaz, M., Khan, S., & Khan, F. S. (2023). Maple: Multi-modal prompt learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 19113-19122).

Introducing the context vectors at both at text and vision branch

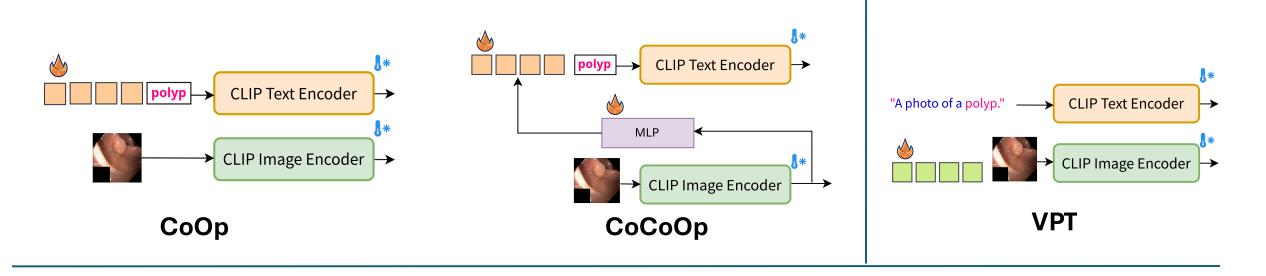
Prompts are initialized in shared embedding space

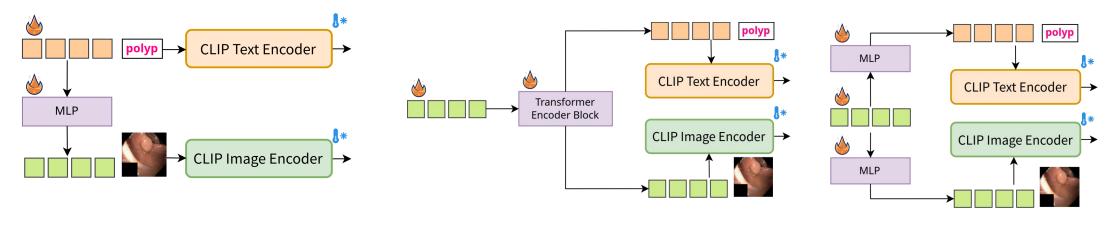


Unified Prompts

Zang, Y., Li, W., Zhou, K., Huang, C., & Loy, C. C. (2022). Unified vision and language prompt learning. arXiv preprint arXiv:2210.07225.

Prompt Tuning Strategies: Overview

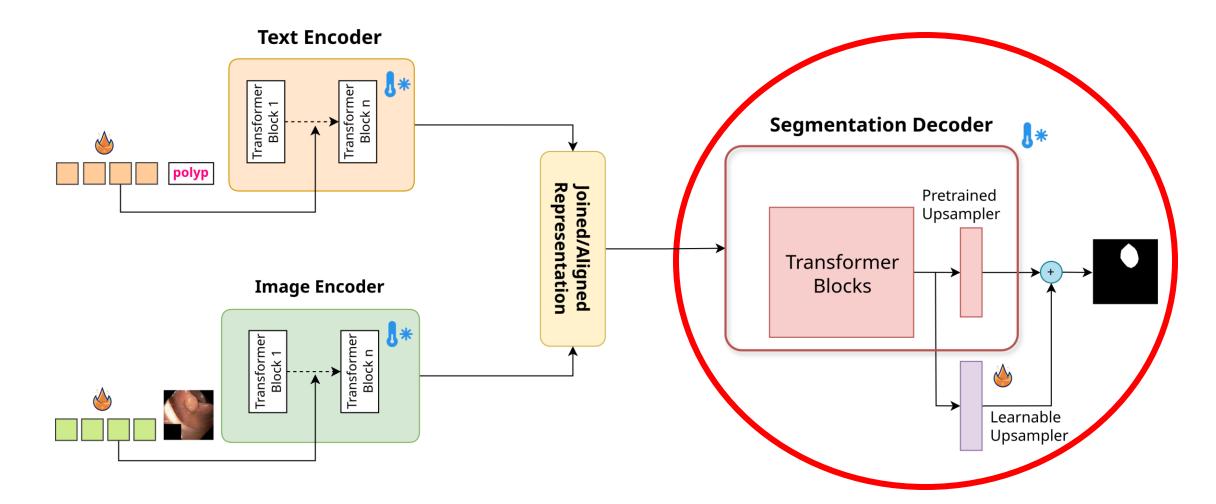


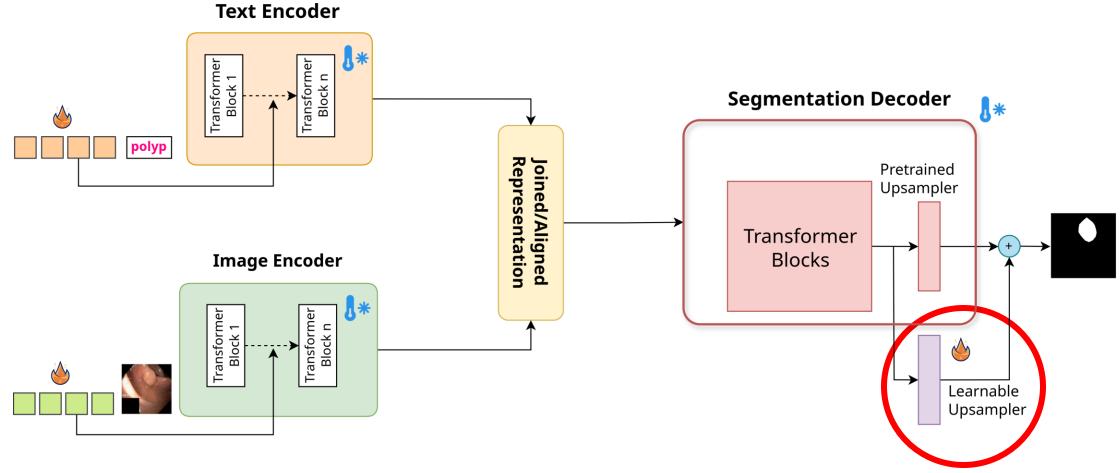


MaPLe

Shared Attention

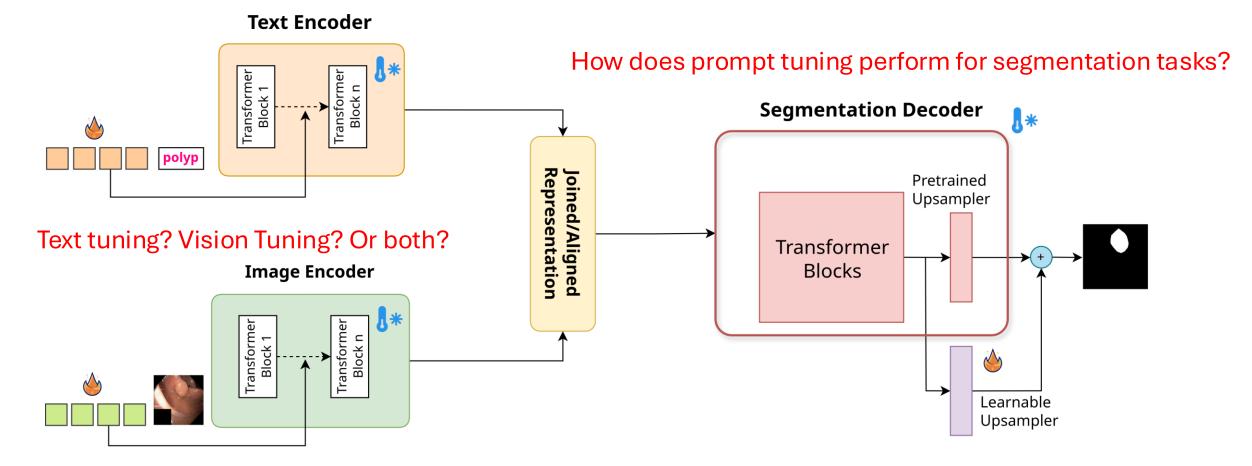
Shared Separate 30





We added this to see if it makes a difference in segmentation performance.

This is inspired by VPT, which shows good performance when final layer is trained. ³²



What should be the prompt depth?

What if the dataset is completely different from pretraining dataset?

Outline

- Vision Language Models (VLMs) and Segmentation models (VLSMs)
- Adapting foundational VLMs and VLSMs
- Prompt Tuning
- TuneVLSeg Benchmark Framework
- Key Results

TuneVLSeg Benchmarking Framework

Prompt Tuning Strategies

Text Tuning: **CoOp, CoCoOp** Visual Tuning: **VPT** Multimodal Prompt Tuning: **MaPle, Shared Attention, Shared Separate**

TuneVLSeg Benchmarking Framework

Prompt Tuning Strategies

Text Tuning: **CoOp, CoCoOp** Visual Tuning: **VPT** Multimodal Prompt Tuning: **MaPle, Shared Attention, Shared Separate**

Key Questions

- Performance of different prompt tuning strategies in segmentation
- Effects of adding context vectors at multiple depths for text and image encoders?
- Is multimodal prompt tuning better than unimodal?
- Natural images vs medical images

TuneVLSeg Benchmarking Framework

Prompt Tuning Strategies

Text Tuning: **CoOp, CoCoOp** Visual Tuning: **VPT** Multimodal Prompt Tuning: **MaPle, Shared Attention, Shared Separate**

Key Questions

- Performance of different prompt tuning strategies in segmentation
- Effects of adding context vectors at multiple depths for text and image encoders?
- Is multimodal prompt tuning better than unimodal?
- Natural images vs medical images

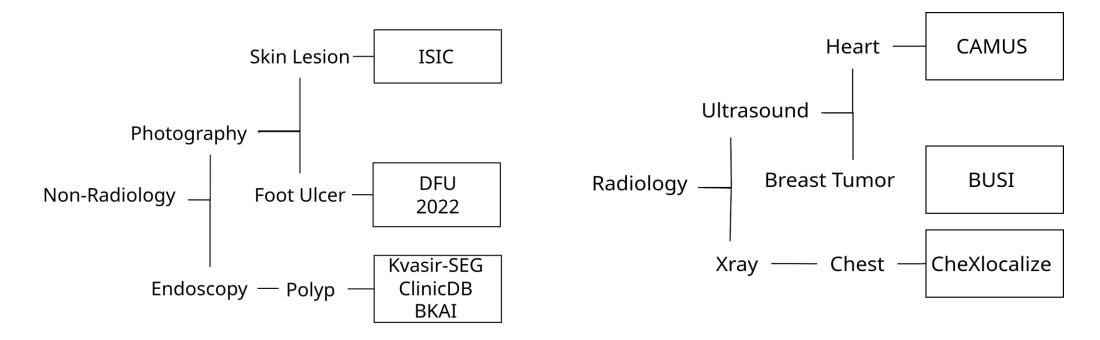
Models

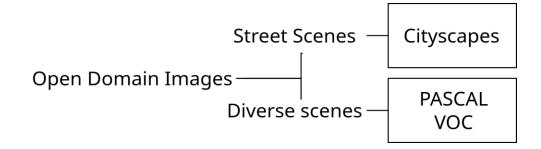
- 2 class-agnostic VLSMs: CLIPSeg, CRIS

Datasets

- 8 medical datasets: 3 radiology, 5 non-radiology
- 2 open domain datasets

Datasets





Experimental setup

Hyperparameter	Search Space	Applicable for	Space Type
Learning rate	[10 ⁻⁵ , 5x10 ⁻³]	ALL	Log
Weight decay	[10 ⁻⁵ , 0.01]	ALL	Log
Prompt depth	[1, 11]	ALL	Integer
Intermediate dimension	32, 64, 96, 128	CoCoOp, Maple	Choice
Transformer: Number of Heads	16, 20, 32	Shared Attention	Choice
Transformer: Dropout Probability	[0.1, 0.55]	Shared Attention	Linear
Transformer: Feed-Forward Dim	1280, 1420	Shared Attention	Choice
Transformer: LayerNorm First	true, false	Shared Attention	Choice
Shared Space Dimension	32,64	Shared Separate	Choice

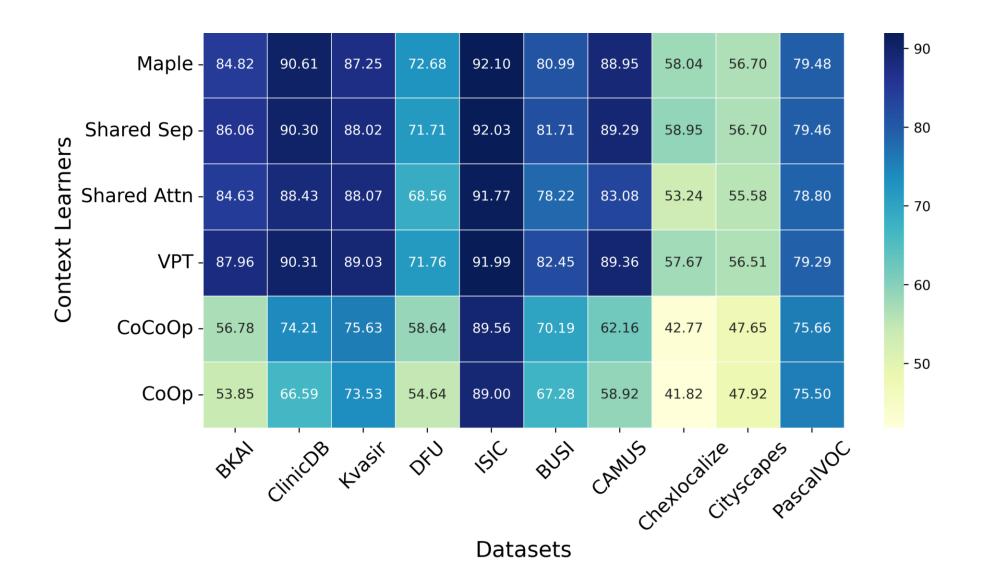
Experimental setup

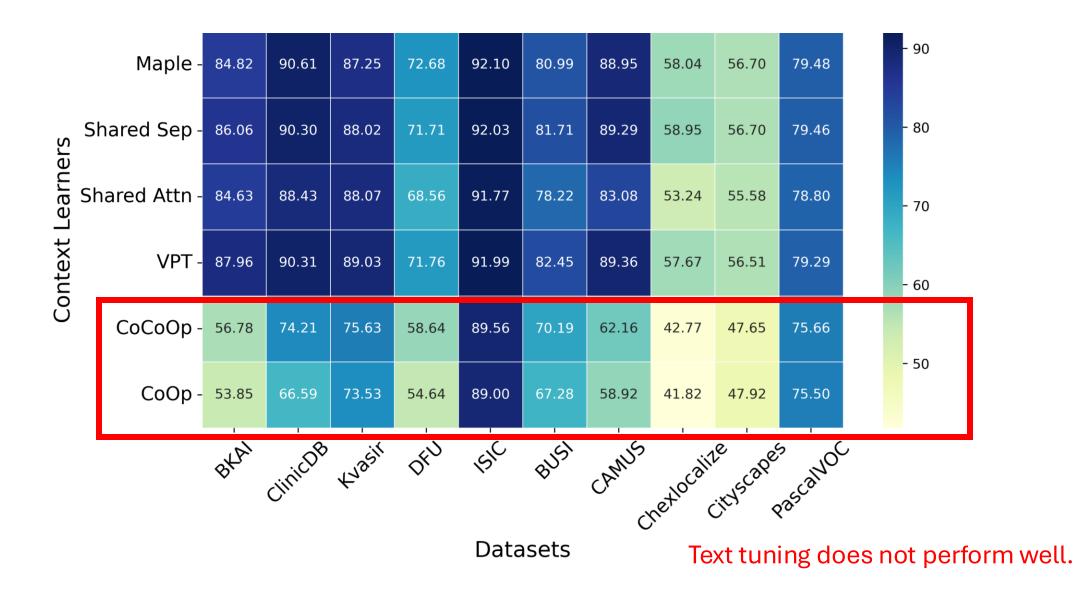
Hyperparameter	Search Space	Applicable for	Space Type
Learning rate	[10 ⁻⁵ , 5x10 ⁻³]	ALL	Log
Weight decay	[10 ⁻⁵ , 0.01]	ALL	Log
Prompt depth	[1, 11]	ALL	Integer
Intermediate dimension	32, 64, 96, 128	CoCoOp, Maple	Choice
Transformer: Number of Heads	16, 20, 32	Shared Attention	Choice
Transformer: Dropout Probability	[0.1, 0.55]	Shared Attention	Linear
Transformer: Feed-Forward Dim	1280, 1420	Shared Attention	Choice
Transformer: LayerNorm First	true, false	Shared Attention	Choice
Shared Space Dimension	32,64	Shared Separate	Choice

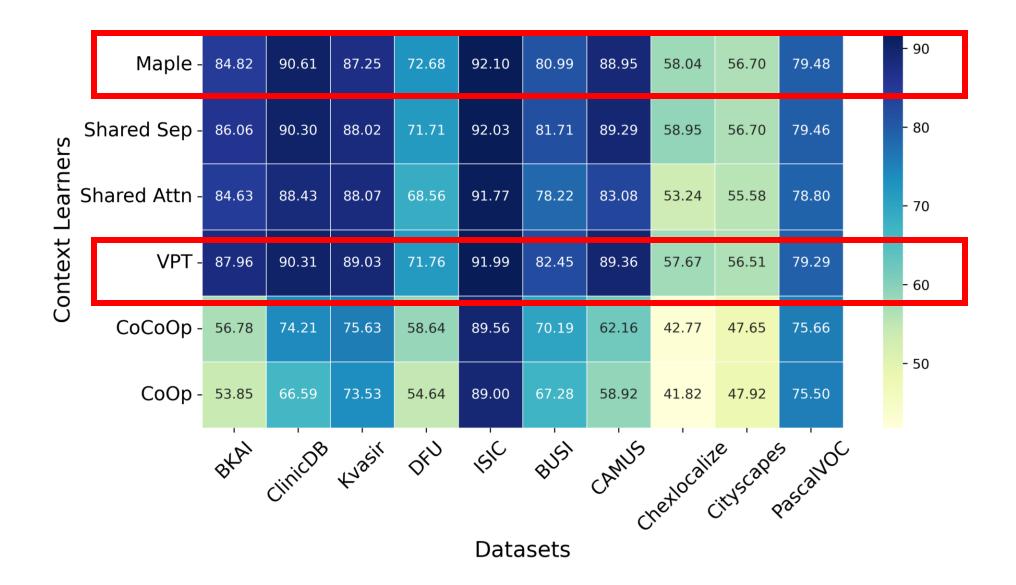
We ran each experiment 20 times with the search space for each parameter

Outline

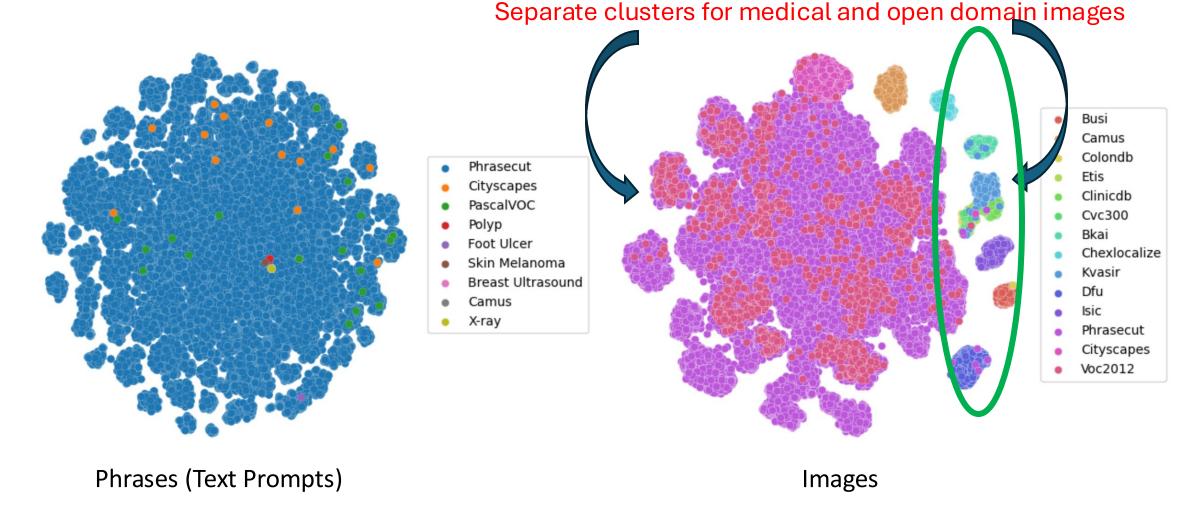
- Vision Language Models (VLMs) and Segmentation models (VLSMs)
- Adapting foundational VLMs and VLSMs
- Prompt Tuning
- TuneVLSeg Benchmark Framework
- Key Results





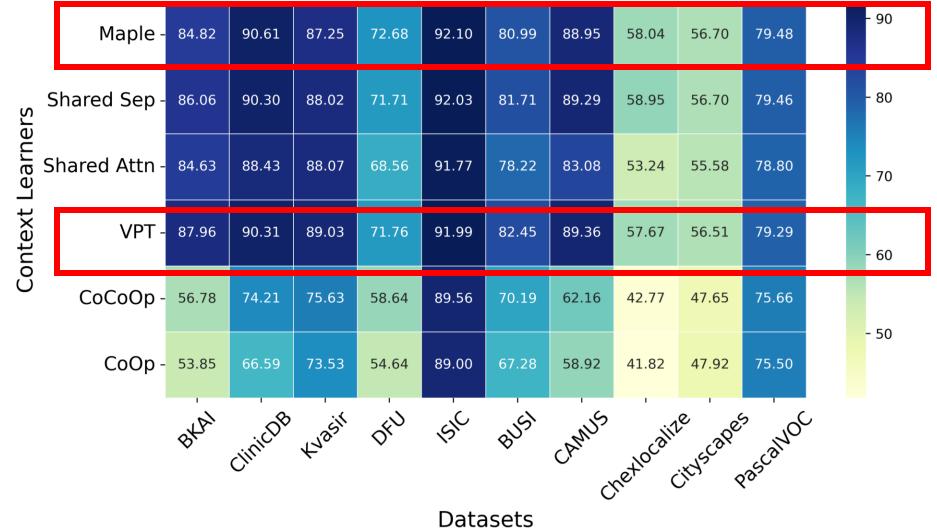


Is VPT's performance due to diversity of images and prompts in datasets?



Significant distribution shift in images than prompts might be the reason for VPT's better performance.

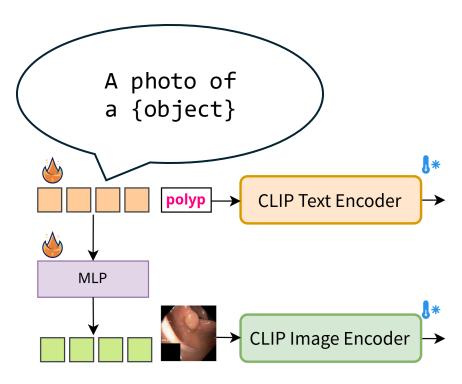
ACCV HANDI



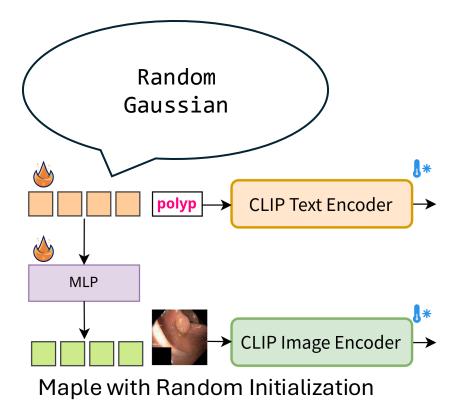
VPT has fewer hyperparameters to tune; smaller search space; can be a good starting choice for good results

Context Vector Initialization

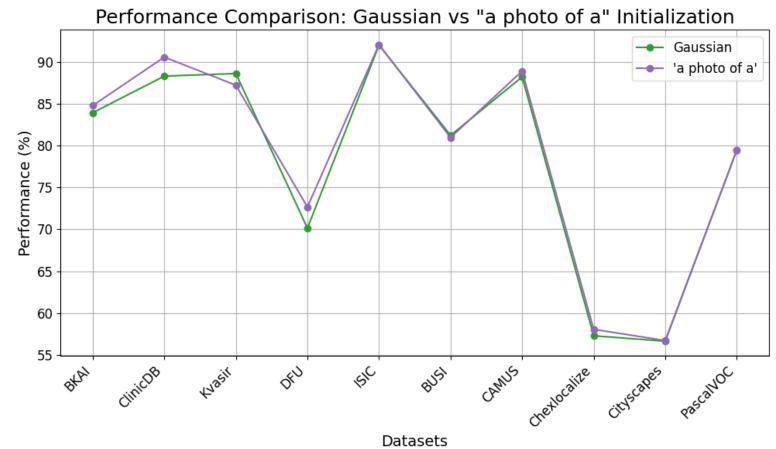
The context vectors of Maple can either be heuristically initialized or randomly.



Maple with Heuristic Initialization



Context Vector Initialization



It *might* be a good idea to initialize the context vectors with embeddings of "a photo of a".

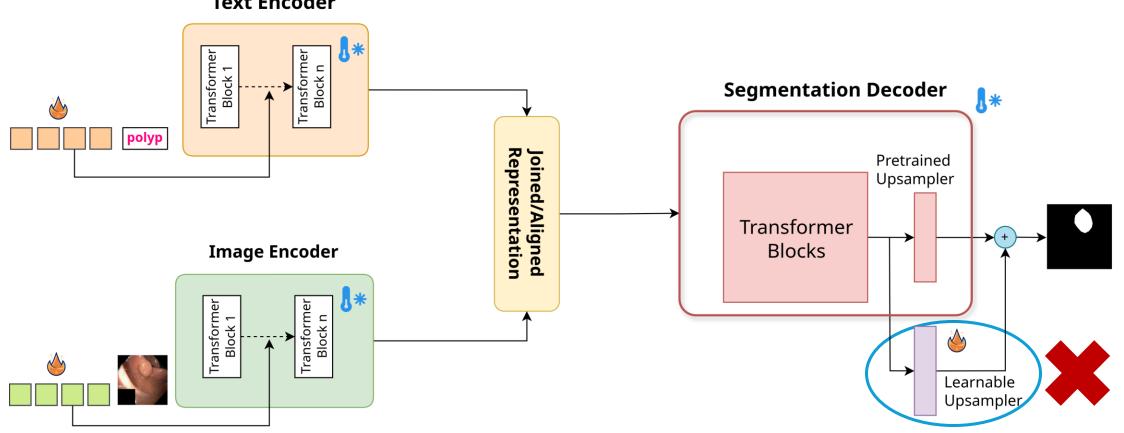
Might be because CLIP is trained on the prompt template "a photo of a <CLS>".

Is the performance of context learners due to learnable upsampler?



Text Encoder

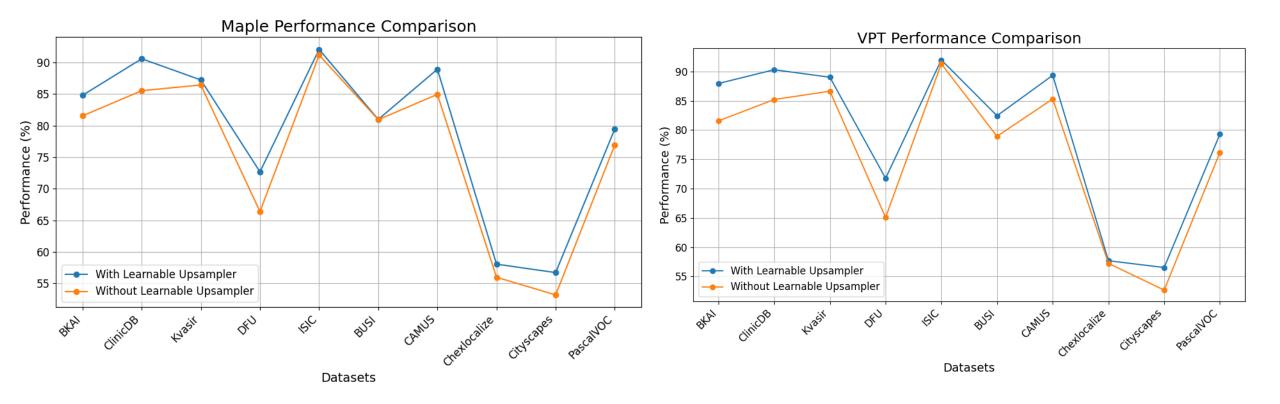
Is the performance of context learners due to learnable upsampler?



Text Encoder

We trained the models by removing this block.

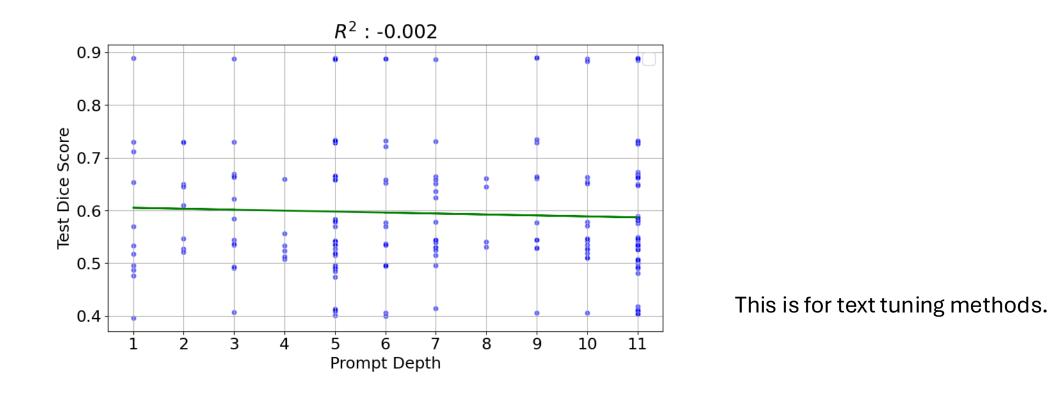
Is the performance of context learners due to learnable upsampler?



Using the learnable upsampler clearly has benefits.

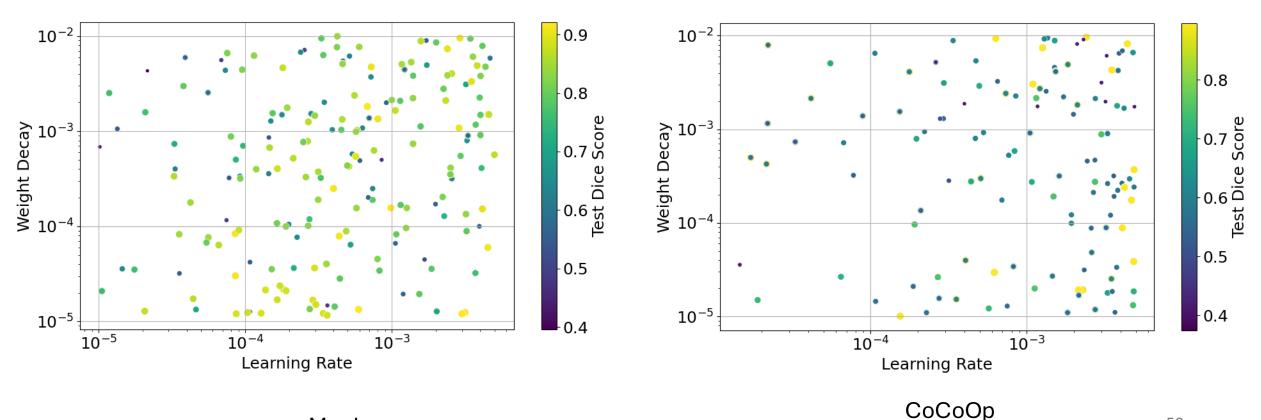
What should the prompt depth be?

- There is no strong correlation between the prompt depth and dice score.
- Increasing prompt depth may not always increase the dice score.



Any specific choice for learning rate and weight decay?

- ACCV HANDI TO 2024
- There is no strong correlation between the Learning Rate/Weight Decay and dice score.



Wrapping up...

- We performed benchmark evaluation on:
 - 2 CLIP-based VLSMs
 - 8 medical segmentation datasets
 - 2 open domain datasets
 - 6 prompt tuning strategies
- Our framework can be extended to other VLSMs and prompt tuning methods.

Prompt tuning is an effective strategy to adapt VLSMs for domain-specific segmentation tasks.

But we need to consider the caveats that comes with tuning different parameters of these methods.

Scan to read paper

